Pera consortium: the research program to solve the problems of the pear cultivation in Italy

Stefano Foschi

FRUIT GROWERS VICTORIA CONFERENCE «Improving on-farm efficiency through innivation»

UNAPera is a consortium founded in 2021 and made up of **25 companies**, of which 13 are Producer Organizations;

All the structures manage pears along the supply chain, from field to point of sale;

UNAPera is **recognized as an Association of Producer Organizations** from the European Union.

apoperonerpo

Consorzio Fruttete S.p.A. Consortile

Associazione Produttori

Gobbi Dino s.r.l.

Minguzzi Spa Consortile

organizzazione produttori - servizi agrotecnici

OROGEL

The flavours of Nature

LAPERA! Engienne pite grande Ingienne pite grande P.O.V. Protection Protection OrtolaniCofri Mal-Artifica and Artification Protection Protect

legra

THE ITALIAN FRUIT COMPANY

a

Italy is the EU main producer of pears.

Despite this, the Italian pear cultivation is experiencing a loss of competitiveness of a structural nature, with a reduction in cultivated area and productivity due to the following factors:

- excessive fragmentation of agricultural enterprises;
- Heterogeneous and often unsatisfactory quality of production;
- lack of recognized brands on the market;
- consumer disaffection;
- extreme climatic events (spring frost, hail, heat waves);
- emerging pathologies, such as brown spots and brown marmorated stink bugs, in addition to the resurgence of existing diseases due to climate change;
- lack of innovation along the supply chain;

Increase the competitiveness of the Italian pear sector through the

implementation and sharing of rewarding initiatives:

- 1. Improvement and standardization of production quality;
- 2. Unified commercial strategy and enhancement of production, also on the basis of the PGI (Protected Geographical Indication);

3. Research and development;

UNAPERA operates through technical and scientific committees with the following objectives:

- 1. Identify the needs of producers;
- 2. Organize and manage research activities;
- 3. Cooperate with national and international research centers;

Sthemphylium Vesicarium trials-Working the grass

Field of cv Abate Fetel with:

- Grass not worked
- Grass worked into the soil (buried at 10-15 cm deep)

30 pairs of orchards in different areas

Fruit damage assessment

FE1 (worked)

FE2 (grass)

Two different fields in the same farms, FE1 worked since 2021

Effect of working grass respect past damage

Where the damage is serious, bury the grass, IF DONE IN A PROPER WAY, seems to bring about a visible and concrete improvement.

When carried out late and in isolated form it does not appear to make a significant contribution to damage control.

It is important to carefully consider all the negative consequences of this technique (including returning to the field).

SCENARIO 2030 TRIAL

Started since octobernovember 2023

Scenario 2030-Abate and William

Agronomic and economic evaluation of a new pest and disease strategy

Evaluate the impact that disease control can have on production with the exclusion of molecules that will be revoked in the next 5 years.

- Evaluate the effectiveness of future disease control strategy vs current integrated pest management programme
- Economic analysis about impact on production
- Introduce new technical lines of defense which must be adopted from 2028

INSECTICIDE	SCADENZA AUTOR. DATA REVOCA	DATA UTILIZZO	FUNGICIDES	SCADENZA AUTOR. DATA REVOCA	data Utilizzo	HERBICIDE	SCADENZA AUTOR. DATA REVOCA	DATA UTILIZZO
ABAMECTINA	01/04/2023 01/07/2023	31/08/2024 30/12/2024	BOSCALID, <mark>CAPTANO</mark> , DITHIANON ¹	31/07/2023	2025?	<mark>GLIFOSATE</mark>	?	?
SPINETORAM	30/05/2024	30/12/2025	FLUAZINAM ²	28/02/2023	2025/2026?			
SPIROTERAMAT	30/04/2024	30/10/2025	METIRAM ³	31/01/2023	2024/2025			
			TEBUCONAZOLO ⁴	31/08/2023	2024			
			ZIRAM ⁵	30/04/2023	2026?			
EMAMECTINA ETOFENPROX METHOSSIFENOZIDE	FOR NEXT REF	PLACEMENT	DIFENCONAZOLO FLUDIOXONIL	FOR NEXT REPL	ACEMENT	DIFLUFENICAN OXYFLUORFEN PENDIMETHAN	FOR NEXT	REPLACEMENT
EMAMECTINA ETOFENPROX METHOSSIFENOZIDE PIRIMICARB	FOR NEXT REF	PLACEMENT	ZIRAIVI ² DIFENCONAZOLO FLUDIOXONIL	FOR NEXT REPL	ACEMENT	DIFLUFENICAN OXYFLUORFEN PENDIMETHAN	FOR NEXT	REPLAC

First activities

- We started to use **caolin** against psilla during leaf fall
- **Rimpro model** in order to better finalize the timing of treatment againts S. Vesicarium
- On Scenario 2030 plot the plants seem to be healthier and more vigorous (to be confirmed with production results)

Pear survey on Valsa (*Cytospora* = Valsa pyri) related to nutritional status of the plants Started 2023

Fig. 1. Relationship between apple leaf potassium (K) content and Valsa canker disease index. Each data point represents leaf K and disease index from 24 orchards sampled in 2012.

Fig. 2. Relationship between nitrogen/potassium (N/K) ratio and disease index. Each data point represents leaf N/K ratio and disease index from 24 orchards sampled in 2012.

Orchard	Nut	rition le	vels ^x	Disease developmenty				
code	N (%)	P (%)	K (%)	Disease index ^z	Disease incidence (%)			
A	2.18	0.26	0.58	25.2	50			
В	2.03	0.22	0.61	22.3	43.3			
C	2.17	0.26	0.65	21.1	33.3			
D	2.36	0.32	0.75	12.1	31.8			
E	2.52	0.33	0.75	19.6	40			
F	2.07	0.29	0.75	20.7	43.3			
G	2.29	0.27	0.76	16.3	40			
н	2.33	0.29	0.76	16.7	43.3			
1	2.41	0.26	0.77	18.4	43.3			
J	2.26	0.22	0.77	6.7	16.6			
K	2.32	0.25	0.86	10.4	16.6			
L	2.4	0.27	0.89	1.1	3.3			
M	2.84	0.28	0.91	1.5	3.3			
N	2.07	0.33	1.02	0	0			
0	2.21	0.22	1.05	2.6	6.8			
P	2.37	0.23	1.15	1.1	3.3			
Q	2.44	0.26	1.16	1.6	3.3			
R	2.33	0.22	1.18	1.1	3.3			
S	2.69	0.24	1.18	1.1	3.3			
Т	2.17	0.25	1.23	1.5	3.3			
U	2.5	0.25	1.24	0	0			
V	2.52	0.24	1.24	1.1	3.3			
W	2.49	0.23	1.25	0	0			
X	2.62	0.24	1.32	0	0			

Management of Valsa Canker on Apple with Adjustments to Potassium Nutrition

H. X. Peng, X. Y. Wei, and Y. X. Xiao, State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China; Y. Sun, Faculty of Science, National University of Singapore, Singapore 117543; A. R. Biggs, Kearneysville Tree Fruit Research and Education Center, West Virginia University, Kearneysville 25443; M. L. Gleason, Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; and S. P. Shang, M. Q. Zhu, Y. Z. Guo, and G. Y. Sun, State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University

Abstract

Peng, H. X., Wei, X. Y., Xiao, Y. X., Sun, Y., Shang, S. P., Biggs, A. R., Gleason, M. L., Zhu, M. Q., Guo, Y. Z., and Sun, G. Y. 2016. Management of Valsa canker on apple with adjustments to potassium nutrition. Plant Dis. 100:884-889.

Valsa canker, caused by the fungus Valsa mali, is one of the most destructive diseases of apple in the primary production areas of China and other East Asian countries. Currently, there are no effective control methods for this disease. We investigated the occurrence of Valsa canker in 24 apple orchards in Shaanxi Province in concert with foliar nutrient analysis, and found that there was a significant negative correlation of leaf potassium (K) content with incidence and severity of Valsa canker.

Fertilization experiments showed that increasing tree K content enhanced resistance to pathogen colonization and establishment. Apple trees with leaf K content greater than 1.30% exhibited almost complete resistance to Valsa mali. Field trials demonstrated that increasing K fertilization could significantly reduce disease incidence. Improved management of tree nutrition, especially K content, could effectively control the occurrence and development of Valsa canker.

Survey on 40 orchard cv Abate Fetel (10 Modena provence, 10 Ferrara, 10

Bologna and 10 Ravenna) with different problems caused by Valsa.

Evaluated presence and severity of damages

Determination of the level of foliar nutrition with analysis

TABELLA A - Scala arbitraria d'incidenza e severità della malattia

della malattia		n.pianta	FILA 1	FILA 2	FILA 3	FILA 4	FILA 5	FILA 6	FILA 7	FILA 8	FILA 9	FILA 10	FILA 11	FILA 12
C lassi distanzati ha	Valore	1	7	0	0	0	0	0	0	0	0	0	0	0
Classi sintomaticne	medio	3	ō	ō	0	ō	ō	3	o	0	ō	ō	0	ō
A – pianta asintomatica	0.00	4	0	0	0	0	0	0	0	0	0	0	0	0
A = planta asintomatica	0,00	6	0	0	0	0	0	0	0	7	5	0	0	0
S = pianta sintomatica,		7	ō	ō	ō	ō	ō	0	ō	0	ō	ō	0	ō
appartenente a una delle		. 8	0	0	0	0	0	0	0	0	0	0	0	0
sequenti sottoclassi:		9	0	0	7	0	0	0	0	0	7	0	0	0
C1 sinteni che si commune		10	o	o	0	0	0	0	o	0	0	0	1	o
SI = sintomi che si osservano	2.55	12	0	0	0	0	7	0	0	0	0	0	7	0
sull'1-5% della struttura legnosa	_,	13	0	0	0	0	0	0	0	0	0	7	0	0
S2 = sintomi che si osservano sul		14	0	0	0	0	0	0	7	0	0	0	0	0
E 1 10% della struttura legnesa	7,55	15	ō	ŏ	ō	0	0	0	4	7	0	0	ō	ŏ
5,1-10% della struttura legnosa		· 17	0	0	2	0	0	4	0	0	0	0	0	7
S3 = sintomi che si osservano sul	17.55	18	0	7	0	0	7	4	0	0	0	0	0	0
10.1-25% della struttura legnosa	17,55	19	0	0	0	0	4	0	0	0	0	4	/	5
<u></u>		21	ŏ	ő	ŏ	ō	ő	ō	ō	ō	3	0	0	0
S4 = sintomi che si osservano sul	32 55	. 22	0	0	0	0	0	0	0	0	0	0	0	0
25,1-40% della struttura legnosa	02,00	23	0	0	0	0	0	0	0	0	4	0	0	0
S5 – sintomi cho si ossorvano sul		24	0	4	0	0	0	э 3	4	0	0	0	0	0
40.1.70% della struttura la grace	55,05	26	0	0	0	0	0	0	0	0	0	0	0	0
40,1-70% della struttura legnosa		27	0	0	0	0	5	4	0	0	3	0	0	2
S6 = sintomi che si osservano		28	4	0	0	0	0	0	0	0	0	0	0	0
su oltre il 70.1% (fino al 99.9%)	85.00	30	o	0	0	0	0	3	o	0	0	0	0	0
della struttura legnosa	00,00	31	0	0	0	7	7	3	0	0	0	0	0	0
della struttura legnosa		32	0	1	0	7	0	5	3	0	0	0	0	0
M = pianta morta	100	33	0	0	0	0	0	0	0	7	5	0	0	0
E = solo fallanza, cioè la pianta		35	3	7	ŏ	ŏ	0	ō	ŏ	ō	0	7	o	ŏ
à stata rimossa ad à assanta	100	36	0	0	7	0	0	0	3	0	0	0	0	0
e stata filliossa eu e assente		37	0	0	0	0	3	0	0	0	0	0	0	0
R = solo rimpiazzo, cioè		38	0	0	0	0	0	0	3	0	3	0	0	0
una pianta più giovane rispetto	100	40	ō	ŏ	2	4	0	ō	ŏ	ō	ō	0	o	ŏ
all'età dell'impianto		41	0	0	0	0	0	0	0	0	7	0	0	0
		42		0	0	0	0	0	0	0	0	0	0	0
F/R = fallanza e rimpiazzo		43		0							0	0	0	0
nella stessa posizione	100	45		ō										
(sostituzione di pianta)		40												

ESEMPIO DI RACCOLTA DATI (RA1):

Peso ponderato	Classe	n°
0	0	444
2,55	1	4
7,55	2	3
17,55	3	13
32,55	4	14
55,05	5	7
85	6	1
100	М	5
100	F	10
100	R	9
	TOT	510
	Proporzione sani	0,87
	Incidenza (%)	12,94
	Severità (%)	7,03

H I J K	K 1 J K L H	L H H O P O R S	J K L M N O FILA 12 FILA 13 FILA 14 FILA 15 FILA 16 FILA 17	1			N	L	IVI	IN	U	۲	ų
				FILA 1	FILA 2	FILA 3 FILA 4	FILA 1	FILA 2	FILA 3	FILA 4	FILA 5	FILA 6	FILA 7
				0	0	0 /	5	6	6	3	5	3	4
				0	1	3 /	1	0	0	0	7	0	3
				2	1	7 4	0	3	5	4	0	3	0
				2	1	7 7	0	7	0	0	0	5	0
				2	7	7 7	2	7	7	6	0	7	0
				0	2	7 6	6	7	7	3	7	2	0
			7 0 1 0 0 7	0	5	1 7	0	3	5	0	7	4	7
0 0 0 0				7	1	5 7	3	4	0	0	7	6	4
				7	4	2 7	- 2	6	4	3	0	6	0
				5	0	7 7	4	3	4	0	0	6	0
				0	0	7 6		/	5	7	/	-	2
				5	2	7 5	- 3	/	4	/	4	0	3
				4	0	5 6	- 4	4	4	7	4	7	4
				7	3	2 3	- 2	4	0	0	6	6	3
0 7 0 6			7 7 0 2 0 0 3 7 7 7 0 7	0	0	0 5		4	0	7	7	7	7
7 0 0 0				7	5	7 7	5	0	7	4	5	0	0
0 7 0 0				3	0	3 3	4	7	0	4	7	7	3
0 0 0 0	3 3 5 7			2	4	5 3	0	7	5	4	7	7	7
0 0 0 0				7	0	7 7	7	4	5	0	0	7	4
				3	0	5 4	- 0	0	0	7	7	0	3
7 0 0 0				0	7	6 5	5	7	4	4	4	0	3
0 0 0 0				2	3	5 6	0	4	0	7	3	5	3
				7	0	5 2	0	0	7	4	6	3	7
				0	5	7 7	O	4	3	4	6	3	3
				6	2	7 5	0	7	0	0	7	0	0
			4 6 0 0 1 7	0	0	7 5	7	6	0	0	3	7	0
				7	0	5 5	0	7	3	0	4	5	0
				7	7	7 7	0	5	0	0	3	5	4
0 3 0 0				4	6	0 6	0	3	0	0	5	3	3
				3	0	2 /	7	0	0	4	4	5	0
				0	0	0 0	4	0	0	7	0	0	4
				,	0	0 7	0	0	4	4	0	2	3
				7	2	7 7	0	7	6	5	5	2	2
			0 3 7 7 0 0 0 0 7 0 5 0	0	0	5 5	0	0	7	0	0	4	4
0 0 0 0				0	0	7 7	- 0	4	6	0	0	2	0
				7	0	2 2	- 0	4	7	0	4	0	0
0 0 0 0				,	0	2 2	0	7	0	7	4	4	7

Plant death, fallacy, replanted (%)

Rootstock trial, why?

Air temperature

aziende

Soil Temperature

Abate trial planted 2024

8	8	7	7	7	10
6	6	5	5	5	7
6	6	5	5	5	7
6	6	5	5	5	7
6	6	5	5	5	7
6	6	5	5	5	7
6	6	5	5	5	7
6	6	5	5	5	7
6	6	5	5	5	7
6	6	6	5	5	7
6	6	6	5	5	7
6	6	6	5	5	7
6	6	6	5	5	7
6	6	6	5	5	7
6	6	6	5	5	7
6	6	6	5	5	7
6	6	6	5	5	7
FILA 1	FILA 2	FILA 3	FILA 4	FILA 5	FILA 6

			Distanza	Pte/campata	Pte totali
Α	utoradicato \	Villiam	1,50	6	104
Aut	oradicato Co	nference	1,50	6	104
	Farold 4	0	1,50	6	48
	Franco		1,80	5	47
	William Fra	nco	1,80	5	87
ļ	Autoradicato	Abate	1,80	5	87
	BA29 Pos	ta	1,28	7	66
	BA29/BI	4	1,28	7	56

To avoid problem with selfrooted plant

Selfrooted in pot

Selfrooted classic in the nursery field

To avoid problem with selfrooted plant

Pre harvest monitoring and Post harvest activity-Abate

Pre harvest fruit monitoring in order to:

- Set up the optimal picking time
- Enhance quality and yield
- Have good result against pear superficial and soft heating
- In order to prevent scald problem:
- Pick time 150 DAFB
- Fruit firmness > 6,1 kg/cm2
- DA meter index > 1,9

From beginning of August-once a week-Laboratory analysis

- Fruit size
- Firmness
- SSC (°Brix)
- Acidity
- Starch degradation
- DA index

Fruit weight increasing in 5 weeks (T1-T2-T3-T4-T5)

Year 1

Year 3

Stach degradation

Year 2

Within 5 weeks, 50% of starch degradation

DA Index

Year 2

Same trends over two years Also the same levels through different years

Fruit firmness (Kg/cm2)

Starting at 7 kg/cm2, weekly weight loss 0.3 kg.

-APO1 -APO2 -APO3 -ZANI1 -ZANI2 -ZANI3

SUPERFICIAL SCALD

Indice di riscaldo = $\sum_{0}^{4} \frac{(\text{gravità del sintomo})x(\text{numero di frutti nella classe di RS})}{\text{numero totale dei frutti}}$

We are developing a **previsional model**, based on pre harvest and on farm (management, type of soil) data. Different lots are divided based on **scald susceptibility**, into:

Lots susceptibility	Cold room	Temperature	Storage Time	System	1MCP treatment
High	Traditional	0, -1°C	Max 3 months		NO
High	Controlled atmosphere		Max 5 months	DCA Isolcell	NO
Low	Traditional	0, -1°C	Max 4 months		NO
Low	Controlled atmosphere		Max 6 months	DCA Isolcell	NO

FIRST RESULTS 2023 AFTER STORAGE

LOW SUSCEPTIBLE AFTER 4 MONTHS

HIGH SUSCEPTIBLE AFTER 4 MONTHS

NEW VARIETIES TRIAL

- EARLY GIULIA
- FRED
- EDEN
- CHEEKY
- Selections from
- UNIBO
- CREA (Italian Ministry of Agriculture Institute)
- Breeding program all around the world

 Assesment about agronomic value and post harvest quality

Crea 98.M2.130.368

Picking time	10 agosto 2023
Bloom period	Medium (+2 William)

	Plant
Vigour and growht habit	Medium, Standard

Quality	
Taste	Good, sweet and juicy.

Size

65-70	70-75	75-80	80-85	85+
10%	10%	10%	20%	50%

Firmness kg	4,7
RSR ° Brix	18,5

Sel. UNIBO PE 15/1

Origin: sel NY10355 x Max red Bartlett

Picking time: II – III decade agosto

	Firmness at ahrvest
22/08/22	5,3 kg
17/08/23	5,0 kg

Plant: vigour medium, standard habith, compact tree High Yield.

Very late bloom period.

- Resistant to *S. vesic*arium
- Susceptible to *E. amylovora*

Settore itosanitario e difesa delle produzioni Emilia-Romagna

DEVELOPMENT OF PROTOCOLS FOR THE INDUCTION OF RESISTANCE/TOLERANCE TO STEMPHYLIUM VESICARIUM THROUGH GENE SILENCING STRATEGIES

Development and production of dsRNA molecules against Stemphylium vesicarium for exogenous application on pear plant tissues (SIGS)

ALMA MATER STUDIORUM Università di Bologna

TROMD

Development of gene silencing techniques through stable expression in plants of RNAi sequences against target genes of the pathogen and verification of their effectiveness in the control of S. vesicarium (HIGS)

Conference pear shOot modified for expression RNAi for controll STEMPHYLLUM VESICARIUM

MANAGEMENT ADVICE FOR PEAR

- More than 1 variety in the field for better pollination.
- 4 rows + 2 rows of compatible variety.
- plan for the use of pollinating insects (bees, bumblebees and osmia) from the beginning of flowering.
- Roofing system strongly recommended
- 2 drip line or sprinkler
- BA29/interstem BH in situation without problem for quince
- Seelfrooted Conference as rootstock for Abate in problematic situation

MANY THANKS

Stefano Foschi 3476269627 <u>sfoschi@rinova.eu</u>